miércoles, 29 de mayo de 2013

Equilibrio de Poblaciones
La descripción dinámica refiere a la dimensión temporal e implica la predicción de la composición de los acervos genéticos que definen la población en un instante futuro en función de su situación inicial.
Si el acervo cigótico es constante en el tiempo, la población está en equilibrio y los otros dos acervos también serán constantes. La estabilidad de los acervos alélico y gamético no implica, en general, la estabilidad del acervo cigótico, salvo en el caso de las poblaciones panmícticas. En las condiciones de ausencia de deriva, mutación, migración y selección, el acervo alélico es siempre constante en el tiempo, independientemente de que haya o no equilibrio.
El objeto de la Genética de Poblaciones es el estudio de los acervos genéticos y la predicción de los cambios que sufren por efecto de diversas fuerzas, en concreto, debido a la acción de la selección natural. Para analizar estos cambios es necesario empezar por establecer la hipótesis nula.
Vamos a desarrollar, al detalle, el caso más simple, es decir, la descripción dinámica de variables genéticas discretas controladas por un locus.
La descripción dinámica depende de la relación de los acervos cigóticos en distintas generaciones. Por tanto, no basta con la simple descripción de los acervos sino que incluye la descripción del método de apareamiento y de cómo transcurren las generaciones. Supondremos que:
  • Existe panmixia, es decir, que, en cada caso, la probabilidad de aparear con un individuo de tipo X es igual a la frecuencia de X en la población.
  • Las generaciones son discretas, esto es, que los adultos se reproducen una vez y desaparecen .
  • El acervo alélico es igual en ambos sexos.
Además, mantendremos las suposiciones planteadas al principio:
  • La población tiene tamaño (censo) infinito Þ No hay deriva genética.
  • No existen fuerzas sistemáticas de cambio de las frecuencias génicas: Migración, mutación o selección.
En estas condiciones, respecto a un locus autosómico, bialélico (A1 y A2), excepto distorsiones de la segregación, la formación de cigotos equivale a la unión de gametos al azar. Por tanto, si tomamos como punto de partida los valores de las frecuencias alélicas (p y q) en una generación t-1, las frecuencias genotípicas de la generación t (D, H y R) se pueden obtener a partir de las anteriores, tal como se indica en la siguiente tabla.
EspermatozoidesÓvulos
A1A2
pq
A1pp2pq
A2qpqq2
Así pues, el acervo cigótico será:
GenotipoA1A1A1A2A2A2
FrecuenciaD = p2H = 2pqR = q2
Las nuevas frecuencias alélicas en la generación t (p' y q' ) serán:
Que, como se ve, son iguales a las de la generación t-1.
Por tanto:
  • Al cabo de una generación de panmixia las frecuencias alélicas y genotípicas del locus no varían, es decir, la población está en equilibrio.
  • Las frecuencias genotípicas se pueden expresar en función de las frecuencias alélicas, lo cual implica que la composición de los distintos acervos se puede expresar en términos de la descripción del acervo alélico.
Esta situación fue descrita en 1908 por Hardy y Weinberg, independientemente, y se conoce como equilibrio de Hardy-Weinberg.
Las consideraciones más importantes en relación con el equilibrio de Hardy-Weinberg son:
  1. Cuando existe equilibrio, cualquiera que sean los valores de p y q, las frecuencias de los genotipos son función de las frecuencias alélicas. En cada caso, el ajuste se comprueba mediante una prueba ; la posibilidad de realizar esta prueba depende únicamente de la posibilidad de distinguir fenotípicamente todos los genotipos, es decir, de que no exista dominancia completa.
  2. En las condiciones especificadas, el equilibrio se alcanza en una única generación de panmixia.
  3. El cuadrado de la frecuencia de los heterocigotos debe ser cuatro veces mayor que el producto de las frecuencias de los homocigotos.
  1. El equilibrio es indiferente respecto a las frecuencias génicas, es decir, se puede establecer para cualquier combinación de valores de p y q.
  2. Si el valor de las frecuencias génicas cambia por alguna razón, se vuelve a establecer un nuevo equilibrio a las nuevas frecuencias génicas, sin que exista tendencia ninguna a volver a la situación original.
  3. La frecuencia máxima de heterocigotos es ½ para el caso extremo de p = q = ½.
  1. Si la frecuencia de un alelo tiende a 0, dicho alelo estará casi siempre en combinaciones heterocigóticas.
  2. Necesita una clasificación genotípica correcta y completa, lo cual implica ausencia de dominancia completa. Cuando ésta existe, la única posibilidad de estimar frecuencias génicas es según las ecuaciones:
que implican la suposición de que la población está equilibrio de Hardy-Weinberg y, por tanto, no se puede comprobar si existe equilibrio.
Una manera alternativa de demostrar las ecuaciones del equilibrio de Hardy-Weinberg es la siguiente:
En la población descripta anteriormente, pueden darse 6 tipos de apareamientos, dependiendo del genotipo de los padres. La frecuencia de cada uno de ellos se calcula como el producto de las frecuencias de los genotipos correspondientes, multiplicadas por dos cuando estos son diferentes dado que cada genotipo puede corresponder, alternativamente, al padre o la madre. La descripción completa de los apareamientos y sus descendencias se resume en el cuadro siguiente:
ParejaHijos
GenotipoFrecuenciaFrec. A1A1Frec. A1A2Frec. A2A2
A1A1 x A1A1D21
A1A1 x A1A22DH1/21/2
A1A1 x A2A22DR 1
A1A2 x A1A2H21/41/21/4
A1A2 x A2A22HR 1/21/2
A2A2 x A2A2R2 1
Por tanto, las frecuencias genotípicas en los hijos (D', H' y R') serán:
Como vemos, las frecuencias genotípicas en la generación siguiente son función de las frecuencias alélicas, siguiendo la misma relación deducida anteriormente.
Llegados a este punto, podríamos repetir el cálculo de las frecuencias alélicas en los hijos (p’y q’) para comprobar que resultan ser iguales a las de la generación parental (p y q):
El principio de Hardy-Weinberg es el más importante de la genética de poblaciones porque:
  1. Demuestra como el modelo mendeliano de herencia permite la conservación de la variabilidad surgida por mutación en contraposición al modelo de herencia mezclada. según el cuál el valor genético del hijo es el promedio de los de sus padres y la variabilidad genética, salvo mutación, se reduce a la mitad en cada generación.
  2. Constituye la hipótesis nula de la genética de poblaciones, es decir, que al analizar una población sólo deberemos buscar explicaciones complejas cuando observemos diferencias significativas entre las frecuencias observadas y las propuestas por el equilibrio de Hardy-Weinberg.
La descripción de poblaciones en equilibrio de Hardy-Weinberg puede ampliarse al caso de un locus autosómico con k alelos, A1, A2, ..., Ak .
Llamaremos pi a la frecuencia del alelo Ai. Tal como ocurre en el caso de un locus bialélico, la suma de las frecuencias alélicas, por definición, vale 1.
Si tomamos una muestra de N individuos de la población (que debe cumplir todas las condiciones anteriores), la descripción del acervo alélico será:
GenotipoAiAiAiAjTotal
Frecuencia absolutaNiiNijN
Frecuencia relativapiipij1
Las frecuencias alélicas se pueden calcular exactamente de la misma forma que en el caso anterior:
En estas condiciones, si la población está en equilibrio de Hardy-Weinberg la relación entre frecuencias genotípicas y alélicas será:
Las consideraciones anteriores siguen siendo válidas.
Existe un ejemplo muy curioso de equilibrio en un sistema multialélico, que es el del crisomélido Phytodecta variábilis (Olivier) En 1925 Zulueta demostró que la coloración de los élitros de este coleóptero depende del genotipo en un locus multialélico situado en el segmento diferencial del cromosoma X y también en el segmento diferencial del cromosoma Y. Estos animales viven en los matorrales de la Retama sphaerocarpa y tienen una capacidad dispersiva prácticamente nula pues, habitualmente, cada individuo completa su ciclo vital en el mismo matorral donde su madre depositó el huevo del que procede. Como consecuencia, cada matorral contiene una población aislada y en un simple paseo se pueden observar poblaciones con aspectos y coloridos muy diferentes. Es más, como en la práctica existen dos sistemas genéticos separados, cada uno de ellos llegará a un equilibrio distinto y los machos y las hembras de una misma población con frecuencia son muy diferentes, debido a que los alelos que se transmiten con el cromosoma Y sólo afectan al colorido de los machos

No hay comentarios.:

Publicar un comentario